A Role for Separase in the Regulation of RAB-11-Positive Vesicles at the Cleavage Furrow and Midbody
نویسندگان
چکیده
Cell division requires coordinated regulation of chromosome segregation and cytokinesis. Although much is known about the function of the protease separase in promoting sister chromosome separation, the role of separase during cytokinesis is unclear. We show that separase localizes to the ingressing furrow and midbody during cytokinesis in the C. elegans embryo. Loss of separase function during the early mitotic divisions causes cytokinesis failure that is not due to eggshell defects or chromosome nondisjunction. Moreover, depletion of separase causes the accumulation of RAB-11-positive vesicles at the cleavage furrow and midbody that is not a consequence of chromosome nondisjunction, but is mimicked by depletion of vesicle fusion machinery. Collectively, these data indicate that separase is required for cytokinesis by regulating the incorporation of RAB-11-positive vesicles into the plasma membrane at the cleavage furrow and midbody.
منابع مشابه
Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis
Membrane trafficking during cytokinesis is not well understood. We used advanced live cell imaging techniques to track exocytosis of single vesicles to determine whether constitutively exocytosed membrane is focally delivered to the cleavage furrow. Ultrasensitive three-dimensional confocal time-lapse imaging of the temperature-sensitive membrane cargo protein vesicular stomatitis virus protein...
متن کاملMechanisms regulating targeting of recycling endosomes to the cleavage furrow during cytokinesis.
Recently, recycling endosomes have emerged as a key components required for the successful completion of cytokinesis. Furthermore, FIP3 (family of Rab11-interacting protein 3), a Rab11 GTPase-binding protein, has been implicated in targeting the recycling endosomes to the midbody of dividing cells. Previously, we have shown that FIP3/Rab11-containing endosomes associate with centrosomes until a...
متن کاملCitron kinase mediates transition from constriction to abscission through its coiled-coil domain.
Cytokinesis is initiated by constriction of the cleavage furrow, and completed with separation of the two daughter cells by abscission. Control of transition from constriction to abscission is therefore crucial for cytokinesis. However, the underlying mechanism is largely unknown. Here, we analyze the role of Citron kinase (Citron-K) that localizes at the cleavage furrow and the midbody, and di...
متن کاملREI-1, a Novel Rab11 GEF with a SH3BP5 domain
The small GTPase Rab proteins are key regulators of membrane trafficking. Rab11 is one of the best-characterized molecules among the Rab family proteins and it plays multiple roles in endocytic recycling, exocytosis, and cytokinesis. However, it remains unclear how Rab11 is activated at a precise timing and location and regulates its diverse functions. Specifically, our knowledge of the upstrea...
متن کاملLinking cytoplasmic dynein and transport of Rab8 vesicles to the midbody during cytokinesis by the doublecortin domain-containing 5 protein.
Completion of mitosis requires microtubule-dependent transport of membranes to the midbody. Here, we identified a role in cytokinesis for doublecortin domain-containing protein 5 (DCDC5), a member of the doublecortin protein superfamily. DCDC5 is a microtubule-associated protein expressed in both specific and dynamic fashions during mitosis. We show that DCDC5 interacts with cytoplasmic dynein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2010